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We study the effect of nonconservation in two sandpilelike models by means of mean-field considerations,
numerical simulationgin two dimensiong and by a renormalization-gro®G) analysis. We find, in agree-
ment with previous studies, that criticality is lost in the randomly driven nonconservative models. Our main
objective is to understand this result in terms of the branching ratio of the avalanche dynamics and from the
view point of a RG analysis. The distribution of avalanches is found numerically to follow a stretched
exponential with a cutoff that diverges as the conservative case is approached. The behavior of the cutoff is
reproduced by the RG analysis. We conclude that uniform drive is a necessary—but not sufficient—condition
for critical behavior in the nonconservative regii®1063-651X97)13112-9

PACS numbgs): 64.60.Ht, 05.40tj, 05.70.Jk

I. INTRODUCTION behavior [10]. It is obviously important to know if the
branching ratio can be trusted as a discriminator between

A clear understanding of theonditions necessary for critical and noncritical behavior in models of SOC.

SOC is still lacking. Conservation was thought of as being In the more technically involved language of the RG di-
crucial for the existence of a critical stdte,2]. It has been cussion one sees that criticality is lost because the globally
shown([3,4] that introducing dissipation in the original sand- attractive fixed point of the conservative theory is repulsive
pile models destroys criticality. On the other hand, the nu-along the directions in paramenter space that correspond to
merical so-called earthquake model introduced by Olamithe nonconservative terms in the equation of motion. One
Feder, and Christensé®FC) proved that a critical state can moves towards the conservative fixed point when the dissi-
exist even when the updating algorithm does not conserviation level is tuned to zero. As this is done the correlation
the dynamical variabl¢5]. The criticality observed in this length will diverge as some inverse powerof the conser-
nonconservative model has been ascribed to a marginal symation level. The RG calculation allows us to calculate this
chronization by several authd8,7]. Although synchroniza- €xponent. The situation is the following. We find numeri-
tion is definitely of importance to the existence of a critical cally that the distribution of avalanches behaves like
state in the OFC model, we found in a recent study thas “exg—(Js)?], where a=1, b=1.3, and sy~ (1/q,
synchronization is not a necessary conditf@h This con- — ) %" with v=1/2. Heree is the dissipation parameter
clusion followed from a study of a random neighbor versionand g, the coordination number = 1/4 corresponds to the

of the OFC model. Synchronization is completely destroyedconservative case. The RG analysis prediets1/umay;

by the assignment of random neighbors at each update. Newhereu,.,=d} — d?z 2 is the largest eigenvalue at the con-
ertheless, the model exhibits power laws for a range of conservative fixed point and? (d}') are the scaling dimensions
servation levels. of the nonconservativeconservativg operators.

In the present paper, we try to gain some insight along In the present paper we focus on two models. One is a
two different approaches: first, by a mean-field calculation oklightly modified version of the cellular automaton model
the branching ratio and second, by a renormalization-groupsed by Bak, Tang, and WiesenfdBTW), where they in-
(RG) calculation. The advantage of the mean-field treatmentroduced the concept of self-organized criticali800 [11].
is that it allows a simple physical interpretation of why criti- The second model is a nonconservative version of a model
cality is lost when dissipation is introduced. For a similarintroduced by Zhang12]. Our conclusion from the study to
methodological purpose we find it important to investigate tobe presented below is that only the Zhang model can remain
what extent the RG method developed byaPGuilera for  critical in the nonconservative regime and only if the model
conservative SOC model$] can yield useful insight when s uniformly driven, in which case the model is identical to
applied to nonconservative models. the OFC model.

In our previous study of the OFC model, we found that The difference between theniformly drivenBTW model
the branching ratiar (to be defined belojcould be used as  studied numerically in the present paper and the OFC model
a single parameter measure of whether the model exhibitsonsists only in the way the dynamical variable of an over-
critical or noncritical behavior. Whear<<1, we found the critical site is transferred to neighboring sites. This differ-
random neighbor model to be noncritical. Correspondinglyence turns out to be of the greatest importance. The uni-
when o=1 we found that the model exhibits power law formly driven OFC model exhibits criticality at a finite level

of nonconservation. In contrast, the BTW model becomes
noncritical as soon as one breaks the conservation, and this
* Author to whom correspondence should be addressed. Electronlvappens for either mode of driveandom or uniform
address: h.jensen@ic.ac.uk The paper is organized the following way. We define the
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models in the next section. In Sec. Ill we present a meantions we use open boundary conditions. Whgrdenotes a
field discussion of the behavior of the model as dissipation isjte outside the boundary of the system, the energy trans-
introduced. Section IV contains our numerical simulations offerred to this site is lost.
the random neighbor as well as of the nearest neighbor ver- e want to make a few comments concerning the relation
sion of the model. In Sec. V we describe a dynamicalpetween the models described above and previously studied
renormalization-group analysis of a Langevin equation. Inmodels. The conservative version€1/q.) of the general-
this analysis we attempt to take into account the thresholgzed BTW model driven randomly, i.e., mod®), is similar
criterion by including the Heaviside step function in the to the original BTW sandpile cellular automatfihl] in the
Langevin equation. Section VI contains a discussion angvay the energy of an overcritical site is transferred. Namely,
conclusions. a fixed amountE, is removed from the site and a corre-
sponding amoung.«E; is isotropically transferred to the
Il. DEFINITION OF MODEL neighboring sites. This is close in spirit to the BTW dynam-

, ! ) ics, where, due to the discrete nature of the variahle
The two models we consider are defined in terms of a realunits” are removed from the active site. When the Zhang

dynamical variableE(r,t), wherer denotes a site on a gl is driven uniformly, i.e., modél), the model is iden-
d-dimensional cubic lattice. In order to fix our terminology, tical to the the OFC model. In contrast to the BTW-like

we will call E(r,t) the energy. The initial configuration is mogel, the total energg(r,t) is removed in this model and
chosen_ at random. The dynamical evolution Qf the fieldyn amount proportional to it, namely,«E(r,t), is distrib-
E(r,t) is controlled by a threshol&.. When all sites have ;ieq.

field valuesE(r,t)<E. energy is added to the system from  The generalized BTW model is different from the original

the outside. The energy can be added in two ways. BTW model in that we allowE(r,t) to assume real values
(1) Uniform drive: In this case all sites grow at the same ather than only integer values. BTW updated their model by

rate adding an amoundE (=1) to randomly chosen sites. We use
in our simulaitons below a spatial homogeneous drive as in
dE(r.b) :7 (1) the model by OF(5]. This is done in order to investigate
dt whether or not the uniform drive will enable the model to
remain critical in the nonconservative regime<(1/q.). We
until one of the sites hits the threshold valkg. find that even the uniformly driven BTW model is noncriti-
(2) Random driveln this case one adds an amouiit to  cal when the relaxation is nonconservative. Our mean-field
a randomly chosen site discussion in the next section illuminates why the general-
ized BTW model behaves so differently from the Zhang
E(r,t)—>E(l’,t)+5E (2) mode'
The procedure continues until one of the sites exceeds the 1. MEAN-FIELD ARGUMENT

threshold values, . ) ) )

When the energy of one of the sites of the lattice becomes L€t US consider a random-neighbor version of the gener-
larger than the threshold value, the driving is switched offalizéd BTW model. Instead of distributing the energy to a
and the system relaxes according to one of the following twdixed set of nearest-neighbor sites, a new collectiorgof

rules. random neighbors are chosen in each update. This is a con-
(a) The (generalizell BTW model: venient way to eliminate the effect of spatial correlations.
The random-neighbor model is therefore expected to be
E(r,t)>E.—E(r,t+1)=E(r,t)—E.—E(r,,t+1) more applicable to a mean-field description than is the origi-
nal nearest-neighbor model.
=E(ry,t)+ k.. (©)) The random-neighbor version of the sandpile model was
solved by Christensen and Olaifi3] by recognizing the
(b) The Zhang model: close relation to a branching process. The mapping of
random-neighbor models onto independent branching pro-
E(r,t)>E.—E(r,t+1)=0—E(r,,t+1)=E(ry,t) cesses has turned out to be very illuminating. In our recent

study of the OFC modédB], we found the branching ratio to
be a useful indication of criticality. In the following we adapt
the previous analysis to the present model. We are aware that

Herer,, denotes the set of neighbor sites assigned to the site : . ; -
. in the present case our considerations will essentially reduce

r. The lattice is updated simultaneously. The relaxation %0 the arguments of Ref13]. However, we believe that our

continued until the energy on a_II sitess belc_JW the thresh- reasoning makes the significance of the parametenore
old value E(r,t)<E. once again. When this happens Oneapparent

switches back to the appropriate driving moiform or The branching rati@r is defined as the ratio(t+1)/n(t)

randon) and adds energy to the system. between the number of overcritical sites at two consecutive

<T1h/e covcﬁtearr;ty ?Sti;mtl:gi? dtizZti)onniixﬁg(r)y?xglia\t/:?cﬁn updates during the evolution of the avalanches. An average
@ e e ' over the avalanche evolution as well as over different real-

an amount equal to (1aq.)€ is lost as a consequence of .__ .. : .
the update, wheré=E_ for the generalized BTW model and izations of avalanches is performed:
E=E(r,t) for the Zhang model. For our numerical simula- o=(n(t+1)/n(t)). (5)

+aE(r,1). (4)
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FIG. 1. Branching ratio in the random-neighbor model as a  pyg, 2, Avalanche size distribution far=0.25 and_ =50, 100,
function of 1L (L =100,200,400), for different values af. From 54 200. The slope of the distribution is slightly larger then 1,

bottom to top,«=0.24, 0.245, 0.2475, 0.25. 7~1.05.
Let P, denote the probability that a random site becomes ) _ )
overcritical as an effect of receivingE, from an updated The equivalent mean-field arguments applied to the OFC
overcritical site.P_ is simply the probability that thee ~ model [8] predicted a=2/(2qc+1). In two dimensions,
value of a site is betweeB,— E.a andE,: whereq.=4, a;=2/9, in surprisingly good agreement with
our simulations of the random-neighbor version of the OFC
Ec model.
P+:f(la)E dEP(E), (6) To summarize, the mean-field arguments suggest that
¢ o<1 for the nonconservative sandpile model defined by Eq.
whereP(E) is the probability that thé field of a site will  (3). Hence, we expect criticality to be lost as soon as

assume the valug. It can be showfi13] that the distribution @ <1/dc This finding is in agreement with our simulations of
P(E) is uniform on the interva] O,E.]. Accordingly, we get the nearest-neighbor version of the generalized BTW model
P, =a and for the branching ratio to be presented in the next section.

o=0q.P;=0qca. (7)
IV. SIMULATION RESULTS

We expect the model to be critical only when=1. This o ) ] )
implies a=1/q.. Thus criticality is lost according to this _ We present in this section the results of two-dimensional
argument when the model becomes nonconservative. simulations of the generalized BTW model defined in Eg.

Our numerical simulations of the random-neighbor ver-(3), With nearest-neighbor interactions and driven uniformly
sion of the generalized BTW model indeed confirm the con-&ccording to Eq(1). For a=1/4 the avalanche size distribu-
clusion of this mean-field argument. We find that the avalions scales with system size, as can be seen in Fig. 2. This is

lanche size distribution has the form the hallmark of criticality. On the other hand, far<1/4, no
scaling with system size is observed for sufficiently large
P(s)xs!~¥2exp —s/sy) systems. A level of dissipation as small as 1 part in 1000 is

enough to destroy criticality, see Fig. 3. The characteristic

and thats, diverges as (If.— a) 2 asa—1/q., in agree- length scale of the systefmeasuring roughly the maximum
ment with Ref[13]. The measured branching ratio as a func-size of an avalanchegrows for increasing values af. We
tion of 1L is shown in Fig. 1 for different values e@f. One  have tentatively tried to describe the behavior of the system
observe that only fora=1/4 doeso extrapolate to 1 as (in the regime ofa values close to &) by fitting the ava-
L—oo, lanche distributions to the stretched exponential form

A similar calculation for the Zhang updagq. (4)] gives  P(s)~s~2exf —(s/s,)°]. The fits are shown as lines in Fig.
P.=a(E")/E; and thereforec,,=q.a(E*)/E., where 4. We usea=1 andb=1.3 for all values ofa. The charac-
(E™) denotes the average energy of the relaxing overcriticaleristic avalanche size, diverges ase— (1/4)~. Figure 5
sites[8]. We notice that the Zhang model may be able toshows a fit to the behaviag~ (1/4— «) 2", wherev=1/2.
keep oz,=1 whena e[ a.,1/q.]. Here,a.=E./(q(E™)) Hence, our simulations show that the nearest-neighbor
is smaller than X, because the supercritical amount of en-model, like the random-neighbor model, ceases to be critical
ergy E">E.. This cannot happen during the BTW update as soon as is made smaller than 4/. In the next section
[Eqg. (3)], where a fixed amount&E. is passed on to the we present renormalization-group arguments that illuminate
neighboring sites independent of the values of the fieldhis numerical finding and allows us to understand the value
E(r,t) at the overcritical site. v=1/2.
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FIG. 3. Avalanche size distributions far=0.249 75. The dis-
tributions refer to systems of linear site=50, L=100, L =200,
andL =400. No finite size scaling is present for>200.
V. RENORMALIZATION-GROUP ANALYSIS o
In order to apply the dynamical renormalization-group 10° 107
(DRG) analysis to the dynamics of the models defined by the 0.25- a)
update in Egs(3) and (4), it is convenient to rewrite the
algorithm in the following form: FIG. 5. Cutoff in avalanche size distributieg as a function of

(0.25- a). The solid line is the interpolatiog,~ (0.25— a) L.
E(r,t+1)=E(r,t)—EO(E(r,t)—E.)+ O (E(r,,t .
( J=E(r)=E8(E(r.H-E) rEn aEO(E(r, 1 We have introduced a source tergmy(r,t) to represent
the driving of the system. The uniform driyease(1) abovg
—Eo+74(r,0). (8) can be represented by the following expression:

The sum runs over the neighbor sitgsof the siter. The
value of the symboE depends on which of the two models 7q(r,t)= 7;0]_[ O(E.—E(r,1)). 9
we consider. For the generalized BTW mofiete Eq.(3)] r
we have€=E,. For the Zhang modédkee Eq(4)] we have
E=E(r,t). The timet refers to the lattice updates af(x)

is the step function®(x)=0 for x<0 and ®(x)=1 for
x>0.

One notes that the drive acts with the same stremgtht all
sites. Moreover, the drive only acts wheneadlrsites have

E values below the threshold value. The random drive can
correspondingly be represented by

nd<r,t>=n<r,t>ﬂ O (E.—E(r,t)), (10)

where (r,t) is a white noise signal in space and time.
The continuum limit of Eq(8) is given by the following
equation:

10°

HE(r,t)=[aDV2+ (aq.—1)]O(E(r,t) —E)E+ ny(r,t),
(11

Ps) 10°

- a=0.23

- a=024

- a=0.245

- @0.2475
6 © a=0.249

107 L g=024975

where D is an undetermined phenomenological diffusion
| constant arising from the coarse-graining procedure involved
when deriving Eq(11). The form of the drive in Eqg9) and
(100 makes it difficult to apply standard RG techniques.
Y Diaz-Guilera has suggested that the random drse= Eq.
b 100 * 10600 (10)] can be represented by a much simpler expreqsidh

s Let us now explain this idea. We choose to write the source
in the form

FIG. 4. Avalanche size distributions fer<0.25. The continu- o
ous lines are fits of the forr® (s) s~ lexd —(s/so)*]. 7a(r,t)=n+ 5(r,t), (12
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where(7(r,t))=0. Since the drive only acts in between the VI. DISCUSSION AND CONCLUSIONS

avalanches and the lifetime of the avalanches spans all time We have studied the effect of lack of tion in t
scales we may try to capture the time correlations in the Ve studi ck orconservation in two

drive defined in Eq(10) by assuming the following cor- types of algori.thms and.for two differeqt types ofc_irive._One
relator for the fluctuating part of the drive: quated algor!thrr_\ can|sts of a BTW—Ilke updatg in Whl_ch a
fixed amount is distributed to the neighboring sites during a
relaxation update of an overcritical site. The other update
rule we have analyzed is of the type considered by Zhang
[12] and by OFJ5] in which an amount proportional to the

It should be noted that this expression only corresponds tenergy of the relaxing site is distributed during the relax-
the usual white noise correlator for the spatial degrees o#tion. We distinguish between models driven by energy
freedom. The correlator is assumed to be independent gfackages added at random sites or a uniform drive in which
time. This is supposed to represent that the drive only acts iall sites increases their energy with the same constant rate.
between the avalanches. This feature of the noise correlat@We addressed the question: Can the uniformly driven BTW
leads to a critical dimensionl.=4 for the conservative model stay critical in the nonconservative regime? The an-
theory, in agreement with general expectatjidd,15. The  swer is no.

standard noise, which i8 correlated in both time and space,  This lack of robustness with respect to the introduction of
leads tod.=2. a nonconservative element in the update algorithm is to be

Neglect for a moment the fluctuating part of the drive by contrasted with the behavior of the OFC mo@&8]. This
assumingny(r,t)= 5. Consider the limit of slow driving model remains definitely critical when a low level of dissi-
7<(1-aq.)E.. A second thought will convince the reader Pation is introduced. The only difference between the uni-
that any spatially homogeneous time-dependent solution trmly driven version of the BTW model we have studied
Eq. (11), E(r,t)=E(t), will evolve towards the time- and the OFC modelis in the way an overcritical site distrib-
independent solutioE(t)=lim__o+(E.+ €). This observa- Utes energy to its neighbor sites. In our model the active site
tion leads us to look for solutions of the form relaxes toE— E. and distributes the fixed amoumtaE, . In
the OFC model the active site relaxes to zero and distributes
an amount.«E. We believe this difference to be important
in two ways. The variable amount of energy distributed in
the OFC algorithm together with the resetting of the relaxing
where 5E(r,t) has zero average. site toE=0 allow the synchronization of the sitg8)]. More-

To make the Langevin equation in E(L1) suitable for ~Over, an effective conservation can occur during the ava-
the standard RG analysis, we need to regularize the nonanknche in the OFC model because the quargiiyE can be
lytical behavior of the step functidi®,16,17. We think that ~ greater thark; even fora<1/q..
the details of the analysis are interesting and useful, but since We have determined numerically the cutsfin the ava-
they are of a somewhat technical nature we have deferréd@nche distribution. We find thasy~(a.—a) %", where
these details to the Appendix. The idea of the calculation ig’=1/2. Since avalanches are compact in two dimensions we
to study the fixed point structure of the Langevin equation agonclude that the correlation length of the model diverges as
more and more nonlinearities are included in the representg~(a.—«)~” when the conservative limit— a.=1/q. is
tion of the step function. We only succeed in applying theapproached. This result is in agreement with a previous study
RG calculation in the case of the random dri#ey. (10)]. In by Manna, Kiss, and Kerts[3] of a slightly different ran-
this case we conclude that the BTW model and the Zhangomly driven model. We stress that=1/2 is found numeri-
model are equivalent even in the nonconservative regimezally for the BTW-like model for the uniform as well as for
We do not find any attractive fixed points for either modelthe random drive.
whena<1/q.. In order to understand how critical behavior ~ We have presented a renormalization-group analysis from
develops asx— 1/q., we study the stability matrix of the Wwhich we conclude that the randomly driven BTW and the
conservative fixed point when nonconservation is includedZhang models are equivalent and both cease to exhibit criti-
The correlation length  diverges according to cal behavior in the nonconservative regime. This result is an
é~(1/g.— @)~ ”. We determine the value offrom the larg-  extension of a previous result for the conservative case by
est eigenvalueu, Of the stability matrix. The result is Diaz-Guilera[9]. From our RG analysis we find that=1/2
v="1tma= 1/2. for dimensions less thad,=4. This agrees well with the

This result is in agreement with the numerical simulationshumerical result mentioned in the paragraph above. The ex-
where the characteristic avalanche sizg scales as ponentv has also been calculated by Vespignani, Zapperi,
So~(1/4— )~ in two dimensions(see Sec. IV and Ref. and Pietronerd25]. They find thatr~0.67 in two dimen-
[3]). In two dimensions we know that avalanches are comsions. Their result depends, however, on the the size of their
pact[24] and therefore expes}, to scale ag?. Generally we ~ coarse-graining cell in their real-space renormalization pro-
would expect cedure and the value estimate foby Vespignaniet al. has
a tendency to decrease with increasing size of the coarse-
graining cell[26]. It is not clear why our RG result=1/2
for the randomly driven BTW model should agree with the
numerical simulation of the uniformly driven BTW model.
whereD; is the fractal dimension of the avalanche. The reason might be, as suggested by numerical simulations,

(n(r)m(r' 1)) =2 8%r—r"). (13

E(r,t)=E.+ SE(r,1), (14

So~ €21~ (Lge— @)~ "Pi~ (L — )P, (15
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that the rand.omly. driven and the uniformly driven BTW 9 SE(r,0)= lim [aDV2+ (aq.—1)]
models have identical exponents B—oe
When we studied the uniformly driven random-neighbor
version of the Zhang or OFC model we found that the critical XF(BSE(r,1))E+ nqy(r,t). (A2)

conservation value ia.=2/9 and that the corresponding ex- o
ponent isv=23/2[8]. From this we conclude théfor reasons  The part of the equation independentdi(r,t) can be re-
that are not clear to us at the mometite BTW model uni- moved from the equation py the following specific tuning of
formly driven behaves as the RG analysis of the randomlyhe constant part of the drive,
driven version of the model predicts, whereas the same is not _
the case for the uniformly driven Zharigr OFQ model. 7=(1-aq.)E., (A3)

The overall conclusion of our paper is the following. Uni-
form drive (in contrast to random driyds a nessesary con- Where we imagine that the limjg—c is followed by the
dition for critical behavior in the nonconservative regime.limit SE—0. We believe that this tuning represents the im-
But uniform drive is not a sufficient condition. The synchro- plicit tuning which, in fact, occurs during simulations of the
nization and effective energy conservation allowed by thgnodel. One recalls that the model st driven during the
Zhang updaté8] appears to be necessary in addition to theevolution of the avalanches. This allows the model to act at a
uniform drive in order to obtain critical behavior in noncon- point where the energy added to the model in between the

servative sandpilelike models. avalanches is precisely balanced by the energy dissipated
during the avalanche. In the simulations of the model, dissi-
ACKNOWLEDGMENTS pation takes place in the bulk when<1/q. (dissipation al-

ways occurs at the open boundary of the systeand Eq.
H.J.J. is grateful to Kim Christensen for very helpful dis- (A3) represents the same type of balance.

cussions. Our next step is to choose the functibfx) in Eq. (A2).
We use in our concrete calculations the probability integral
APPENDIX: RG ANALYSIS [18]
This appendix contains some of the nonstandard features
of applying the RG method to E¢L1). First, we need to find f(x)= i g die t
a way to represent the step function in terms dfrdinite) NE
polynomial[9,16,17. Consider a real functiof: R— R with .
the following properties: (8 lim,_ _..f(x)=0, (b) 11 D 1 x2-1
lim,_...f(x) =1, and(c) the function can be expanded around =27 Net= (=1 (2k—1)(k—1)!" (A4)
x=0 and has infinite radius of convergence. The step func-
tion is represented by The results obtained for a specific choice @#function
o representatiorf(x) will not depend onf(x) when all terms
() ,;linxf(ﬁx). A1) in the expansion of (x) are included and the limjg—o° is
performed 16]. Substituting the expansion of tif function
From Egs.(11), (14), and(Al) we derive into Eq. (A2) leads to the following equation:

HE(r,t) =DV2E+N\,V2E2+ \gV2E3+ N\, V2E -+ NgVZE S+ - - - + v, E+ y,E2+ y3E3+ y, B4+ y6E5+ - - + (1, 1).
(A5)

where(E)=(#)=0 [to simplify the notation we have dropped then front of E(r,t), see Eq(A2)]. The coefficients for the
generalized BTW model and the Zhang model are given, respectively, by

__aDEg ~[1 E.B ~ E.8 1 E aDg
D=\ = \/; or aD §+ﬁ>’ v1=(ag. 1)ﬁ or (ags—1) §+ \/;), A>=0 or W,
-1 DE 33
y,=0 or M )\3=—M (same for the Zhang model

N 3w

E 3
v3=—(aq.—1) B (same for the Zhang model etc. (AB)
3w
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Nonlinearities corresponding to even powers of the fieldneously. The criticality of the BTW model is destroyed as
E(r,t) are absent in the BTW model but present in thesoon as any degree of nonconservation is introduced by
Zhang model. The coefficients of the odd term are identicathoosinga< 1/q.. Whereas the Zhang modebhich when
in the two models from three up. Note thgt<(aq,— 1) for ~ driven homogeneously is identical to the OFC modet-
all i, that is, in the conservative case all theterms disap- mains critical even for<1/q..
pear. Can the behavior of the uniformly driven models be un-

We now study the nature of the fixed point structure ofderstood by use of the RG technique? Can the homoge-
Eq. (A5) by applying the usual RG proceduf&9—21. A n_eously drlvgn sy;tenﬁsee Eq.(g)] be represented by a
transparent and clear explanation of the method can be fourRiTP!e effective noise along the lines of E¢s2) and(13)?
in [22]. Here we limit our discussion to the results of the For '”Star.‘ce' can we_detect any trace of the appearence of an
analysis. We study the fixed point structure as more an&lll-attractlve fixed point for the RG flow equations when we

; s ; ; ; damp the fluctuations in the noise by lettihg—0 in Eq.
more nonlinearities are included in EGA5). To appreciate ) ) .

. . R . . ?
the potential of this approach it is worthwhile to mention that(13)' One could imagine that a d!ffgrence between the_two
for the conservative cagee., all y,=0) the following hap- models could be detected in the limit where the fluctuations
pens[9]. The equation with\;=0 for all i=3 has no attrac- in the driving terms(r.t) are mad_e smaller by decreasifig
tive fixed point in dimensiond<<d.=4. However, an attrac- We were, however, unable to find any tendency towards a

tive fixed point appears fod<d, when nonlinearities of difference in the fixed point behavior of the two models in

higher than quadratic order is included. Thus it seems pOSt_he limit of smalll’. We conclude that the nature of the drive

sible to describe the self-organizatitattractive fixed point g#z:eai;riztﬁ eg:]or;eciﬁgﬂ%{oir%f r?j?irv(ta?w urzgg;sl;a%d the
produced by the threshold conditiph5] (modeled by theé® y y

function by including a sufficient number of nonlinearities means of the RG approach. "
in Eq. (A5). Let us now explain how the value of the critical exponent

The difference between the set of nonlinearities that enfj:l/2 can be undersiood in terms of the RG analysis. We

ters into the equation of motion for the BTW model and thefirSt note that the coeff_icientﬁ and the coeffi_cientsi origi-
Zhang model turns out to be irrelevant in the lingito oo, nates from the expansion of the same function, namelf)the
This was shown by [iz-Guilera for the conservative case f.u.nctlon. It seems therefore natural to assume that the iden-
[9]. In the nonconservative case the renormalization of thd'ties

noise is different in the two models for finife values. In the yi A

BTW model the strength of the noise correlaloin Eq. (13) —=— (A7)

is not renormalized. In the Zhang, howevEr s renormal- YN

ized at the one-loop leveincluding up to cubic nonlineari-  ramain correct under renormalization. By use of this assump-
ties) by a term proportional to the square of the nonconseryjon we can deduce that the RG flow equations for the cou-
vative coupling constany,. First, sincey, vanishes in the  ,jing constants are of the following form:

conservative limite—1/q,, we recover Daz-Guilera’s re-

sult in this limit. Second, the term responsible for the renor-

. -
malization ofI" is proportional to3~2 and vanishes accord- W:)\i[Fi()\"y'F)'i_di)\]Ehi)\!
ingly in the limit 8— .
The following heuristic argument appears to be a simple i ..
way to see that the difference between the parity of the non- Q- YilFi(\,y,I)+dY]=h/. (A8)

linearities which enter into the equation of motion for the

two models(BTW: odd terms only; Zhang: both odd and e have made use of the following notatiéh.denotes a set
ever) cannot represent a factual difference between the twgf functions[to be calculated in principle through the loop
models. Assume we represent fiefunction in terms of EQ.  expansion of Eq(A5)]. The same functiof; enters the flow
(A1) by choosing a functiofi(x) which when expanded only equation for\; and fory; . The functions=; depends on the
contains odd powers of [as in the example in EqA4)]. coupling constants.=(X\; ,\ ) and 7= (71,7 )
The functionx—[f(x)]? il also be able to serve as a rep- ;"o e strength of the noise correlaforThe bare scal-

LeSﬁntzt(Ijon c()jf theé function. I:onever,f_f(x) Wlllkcontaln ¢ ing dimension of the coupling constants are easily deter-
oth odd and even powers &f Hence, if we make use of g by dimensional analysi49—22,

f2(x) as our representation of ti function in Eq.(A2) the
BTW model and the Zhang model would not differ with d=(i—-1)x+z—2, d’=(i—-1)x+z=d+2.

respect to the oddness or evenness of the nonlinearities en- (A9)
tering into Eq.(A5).

We conclude that the randomly driven BTW and theHere we made use of the usual definitions of exponents:
Zhang models remain equivalent even in the nonconservativessume we scale space according-tee”r. To compensate
case. These general considerations were confirmed when Vier this change of scale, we scale time and the field according
analyzed Eq(A5) by successively including nonlinearities to t—e*'t andE—e* E. This defines the dynamical expo-
up to fifth order. Let us now turn to the uniformly driven nentz and the roughening exponespt
models. Numerical simulations show that the BTW model The fixed points of the flow equations are obtained by
and the Zhang modedre different when driven homoge- demanding that all right hand sides in E48) vanish simul-
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taneously, i.e.h}=h?=0 for all i. The conservative fixed
point\*, analyzed by faz-Guilera, is obtained by assuming
that y=0 and then solving

Fi(X,00)+d}=0=N=X*. (A10)

NONCONSERVATIVE SANDPILE MODELS
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de‘(&h—,ul)=de({(9hi"/(9)\j}—ﬂl)l_k[ (d)—dh—p)=0.
(A14)

Since{dh}/a\;} is simply the stability matrix of the Be-

This fixed point is attractive in the space consisting of theGuilera fixed point we conclude that the fixed poiﬁt*QO)

coupling constants.. We now study the stability of this
fixed point in the larger coupling space consisting\af .
The linear stability of the fixed pointf(, ;/) = (X* ,0) is con-
troled by the Jacobian matrix

ahMan;  ohMay;

Ijxx 0= dnYIan;  anhlldy; (A11)
(X*,0)
Nid(F) dF;
=l N 77, (A12)
0 Si(Fi+d))/ 1y

The diagonality of the partial derivative#h/dvy; evaluated
at the fixed point (:* ,0) together with the identity

Fi(x*,00)=—d}, (A13)
which follows from Eqg.(A10) makes it easy to see that the
eigenvalueg: of the Jacobian matrix in EqA12) are deter-
mined by the following equation:

remains(as expectedattractive along the directions of the
coupling constanta,; and that the fixed point is repulsive
along the directionsy;. The eigenvalues of the repulsive
directions are according to EGA14) and Eq.(A9), all given

by

w=dY—d}=2. (A15)

As the fixed point K*,O) is approaced by tuning towards
the critical value 1 (where all are they coupling constants
vanish, the correlation length of the system will diverge
according to

E~(1ge—a)™7, (A16)

where the exponent is given by the inverse of the largest
repulsive eigenvalue of the fixed poif@3]. Hence in our
case we haver=1/2. This result is independent of dimen-
sion.
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