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Nonconservative sandpile models
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We study the effect of nonconservation in two sandpilelike models by means of mean-field considerations,
numerical simulations~in two dimensions!, and by a renormalization-group~RG! analysis. We find, in agree-
ment with previous studies, that criticality is lost in the randomly driven nonconservative models. Our main
objective is to understand this result in terms of the branching ratio of the avalanche dynamics and from the
view point of a RG analysis. The distribution of avalanches is found numerically to follow a stretched
exponential with a cutoff that diverges as the conservative case is approached. The behavior of the cutoff is
reproduced by the RG analysis. We conclude that uniform drive is a necessary—but not sufficient—condition
for critical behavior in the nonconservative regime.@S1063-651X~97!13112-9#

PACS number~s!: 64.60.Ht, 05.40.1j, 05.70.Jk
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I. INTRODUCTION

A clear understanding of theconditions necessary for
SOC is still lacking. Conservation was thought of as be
crucial for the existence of a critical state@1,2#. It has been
shown@3,4# that introducing dissipation in the original san
pile models destroys criticality. On the other hand, the
merical so-called earthquake model introduced by Ola
Feder, and Christensen~OFC! proved that a critical state ca
exist even when the updating algorithm does not conse
the dynamical variable@5#. The criticality observed in this
nonconservative model has been ascribed to a marginal
chronization by several authors@6,7#. Although synchroniza-
tion is definitely of importance to the existence of a critic
state in the OFC model, we found in a recent study t
synchronization is not a necessary condition@8#. This con-
clusion followed from a study of a random neighbor versi
of the OFC model. Synchronization is completely destroy
by the assignment of random neighbors at each update. N
ertheless, the model exhibits power laws for a range of c
servation levels.

In the present paper, we try to gain some insight alo
two different approaches: first, by a mean-field calculation
the branching ratio and second, by a renormalization-gr
~RG! calculation. The advantage of the mean-field treatm
is that it allows a simple physical interpretation of why cri
cality is lost when dissipation is introduced. For a simi
methodological purpose we find it important to investigate
what extent the RG method developed by Dı´az-Guilera for
conservative SOC models@9# can yield useful insight when
applied to nonconservative models.

In our previous study of the OFC model, we found th
the branching ratios ~to be defined below! could be used as
a single parameter measure of whether the model exh
critical or noncritical behavior. Whens,1, we found the
random neighbor model to be noncritical. Corresponding
when s51 we found that the model exhibits power la
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behavior @10#. It is obviously important to know if the
branching ratio can be trusted as a discriminator betw
critical and noncritical behavior in models of SOC.

In the more technically involved language of the RG d
cussion one sees that criticality is lost because the glob
attractive fixed point of the conservative theory is repuls
along the directions in paramenter space that correspon
the nonconservative terms in the equation of motion. O
moves towards the conservative fixed point when the di
pation level is tuned to zero. As this is done the correlat
length will diverge as some inverse powern of the conser-
vation level. The RG calculation allows us to calculate th
exponent. The situation is the following. We find nume
cally that the distribution of avalanches behaves l
s2aexp@2(s/s0)

b#, where a.1, b.1.3, and s0;(1/qc
2a)22n with n.1/2. Herea is the dissipation paramete
and qc the coordination number,a51/4 corresponds to the
conservative case. The RG analysis predictsn51/mmax,
wheremmax5di

g2di
l52 is the largest eigenvalue at the co

servative fixed point anddi
g (di

l) are the scaling dimension
of the nonconservative~conservative! operators.

In the present paper we focus on two models. One i
slightly modified version of the cellular automaton mod
used by Bak, Tang, and Wiesenfeld~BTW!, where they in-
troduced the concept of self-organized criticality~SOC! @11#.
The second model is a nonconservative version of a mo
introduced by Zhang@12#. Our conclusion from the study to
be presented below is that only the Zhang model can rem
critical in the nonconservative regime and only if the mod
is uniformly driven, in which case the model is identical
the OFC model.

The difference between theuniformly drivenBTW model
studied numerically in the present paper and the OFC mo
consists only in the way the dynamical variable of an ov
critical site is transferred to neighboring sites. This diffe
ence turns out to be of the greatest importance. The
formly driven OFC model exhibits criticality at a finite leve
of nonconservation. In contrast, the BTW model becom
noncritical as soon as one breaks the conservation, and
happens for either mode of drive~random or uniform!.

The paper is organized the following way. We define t
ic
6702 © 1997 The American Physical Society
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56 6703NONCONSERVATIVE SANDPILE MODELS
models in the next section. In Sec. III we present a me
field discussion of the behavior of the model as dissipatio
introduced. Section IV contains our numerical simulations
the random neighbor as well as of the nearest neighbor
sion of the model. In Sec. V we describe a dynami
renormalization-group analysis of a Langevin equation.
this analysis we attempt to take into account the thresh
criterion by including the Heaviside step function in th
Langevin equation. Section VI contains a discussion a
conclusions.

II. DEFINITION OF MODEL

The two models we consider are defined in terms of a
dynamical variableE(r ,t), where r denotes a site on a
d-dimensional cubic lattice. In order to fix our terminolog
we will call E(r ,t) the energy. The initial configuration i
chosen at random. The dynamical evolution of the fi
E(r ,t) is controlled by a thresholdEc . When all sites have
field valuesE(r ,t)<Ec energy is added to the system fro
the outside. The energy can be added in two ways.

~1! Uniform drive. In this case all sites grow at the sam
rate

dE~r ,t !

dt
5 h̄ ~1!

until one of the sites hits the threshold valueEc .
~2! Random drive. In this case one adds an amountdE to

a randomly chosen siter :

E~r ,t !→E~r ,t !1dE. ~2!

The procedure continues until one of the sites exceeds
threshold valueEc .

When the energy of one of the sites of the lattice becom
larger than the threshold value, the driving is switched
and the system relaxes according to one of the following
rules.

~a! The ~generalized! BTW model:

E~r ,t !.Ec→E~r ,t11!5E~r ,t !2Ec→E~rn ,t11!

5E~rn ,t !1aEc . ~3!

~b! The Zhang model:

E~r ,t !.Ec→E~r ,t11!50→E~rn ,t11!5E~rn ,t !

1aE~r ,t !. ~4!

Herern denotes the set of neighbor sites assigned to the
r . The lattice is updated simultaneously. The relaxation
continued until the energy on all sitesr is below the thresh-
old value E(r ,t)<Ec once again. When this happens o
switches back to the appropriate driving mode~uniform or
random! and adds energy to the system.

The constanta determines the conservation level. Wh
a,1/qc , whereqc is the coordination number of the lattice
an amount equal to (12aqc)E is lost as a consequence
the update, whereE5Ec for the generalized BTW model an
E5E(r ,t) for the Zhang model. For our numerical simul
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tions we use open boundary conditions. Whenrn denotes a
site outside the boundary of the system, the energy tra
ferred to this site is lost.

We want to make a few comments concerning the relat
between the models described above and previously stu
models. The conservative version (a51/qc) of the general-
ized BTW model driven randomly, i.e., mode~2!, is similar
to the original BTW sandpile cellular automaton@11# in the
way the energy of an overcritical site is transferred. Name
a fixed amountEc is removed from the site and a corre
sponding amountqcaEc is isotropically transferred to the
neighboring sites. This is close in spirit to the BTW dynam
ics, where, due to the discrete nature of the variableqc,
‘‘units’’ are removed from the active site. When the Zhan
model is driven uniformly, i.e., mode~1!, the model is iden-
tical to the the OFC model. In contrast to the BTW-lik
model, the total energyE(r ,t) is removed in this model and
an amount proportional to it, namely,qcaE(r ,t), is distrib-
uted.

The generalized BTW model is different from the origin
BTW model in that we allowE(r ,t) to assume real value
rather than only integer values. BTW updated their model
adding an amountdE ~51! to randomly chosen sites. We us
in our simulaitons below a spatial homogeneous drive as
the model by OFC@5#. This is done in order to investigat
whether or not the uniform drive will enable the model
remain critical in the nonconservative regime (a,1/qc). We
find that even the uniformly driven BTW model is noncrit
cal when the relaxation is nonconservative. Our mean-fi
discussion in the next section illuminates why the gene
ized BTW model behaves so differently from the Zha
model.

III. MEAN-FIELD ARGUMENT

Let us consider a random-neighbor version of the gen
alized BTW model. Instead of distributing the energy to
fixed set of nearest-neighbor sites, a new collection ofqc
random neighbors are chosen in each update. This is a
venient way to eliminate the effect of spatial correlation
The random-neighbor model is therefore expected to
more applicable to a mean-field description than is the or
nal nearest-neighbor model.

The random-neighbor version of the sandpile model w
solved by Christensen and Olami@13# by recognizing the
close relation to a branching process. The mapping
random-neighbor models onto independent branching p
cesses has turned out to be very illuminating. In our rec
study of the OFC model@8#, we found the branching ratio to
be a useful indication of criticality. In the following we adap
the previous analysis to the present model. We are aware
in the present case our considerations will essentially red
to the arguments of Ref.@13#. However, we believe that ou
reasoning makes the significance of the parametera more
apparent.

The branching ratios is defined as the ration(t11)/n(t)
between the number of overcritical sites at two consecu
updates during the evolution of the avalanches. An aver
over the avalanche evolution as well as over different re
izations of avalanches is performed:

s5^n~ t11!/n~ t !&. ~5!
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Let P1 denote the probability that a random site becom
overcritical as an effect of receivingaEc from an updated
overcritical site.P1 is simply the probability that theE
value of a site is betweenEc2Eca andEc :

P15E
~12a!Ec

Ec
dEP~E!, ~6!

whereP(E) is the probability that theE field of a site will
assume the valueE. It can be shown@13# that the distribution
P(E) is uniform on the interval@0,Ec#. Accordingly, we get
P15a and for the branching ratio

s5qcP15qca. ~7!

We expect the model to be critical only whens51. This
implies a51/qc . Thus criticality is lost according to this
argument when the model becomes nonconservative.

Our numerical simulations of the random-neighbor v
sion of the generalized BTW model indeed confirm the c
clusion of this mean-field argument. We find that the a
lanche size distribution has the form

P~s!}s~23/2!exp~2s/s0!

and thats0 diverges as (1/qc2a)22 as a→1/qc , in agree-
ment with Ref.@13#. The measured branching ratio as a fun
tion of 1/L is shown in Fig. 1 for different values ofa. One
observe that only fora51/4 doess extrapolate to 1 as
L→`.

A similar calculation for the Zhang update@Eq. ~4!# gives
P15a^E1&/Ec and thereforesZh5qca^E1&/Ec , where
^E1& denotes the average energy of the relaxing overcrit
sites @8#. We notice that the Zhang model may be able
keep sZh>1 when aP@ac,1/qc#. Here, ac5Ec /(qc^E

1&)
is smaller than 1/qc because the supercritical amount of e
ergy E1.Ec . This cannot happen during the BTW upda
@Eq. ~3!#, where a fixed amountaEc is passed on to the
neighboring sites independent of the values of the fi
E(r ,t) at the overcritical site.

FIG. 1. Branching ratio in the random-neighbor model as
function of 1/L (L5100,200,400), for different values ofa. From
bottom to top,a50.24, 0.245, 0.2475, 0.25.
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The equivalent mean-field arguments applied to the O
model @8# predicted ac52/(2qc11). In two dimensions,
whereqc54, ac52/9, in surprisingly good agreement wit
our simulations of the random-neighbor version of the O
model.

To summarize, the mean-field arguments suggest
s,1 for the nonconservative sandpile model defined by
~3!. Hence, we expect criticality to be lost as soon
a,1/qc This finding is in agreement with our simulations
the nearest-neighbor version of the generalized BTW mo
to be presented in the next section.

IV. SIMULATION RESULTS

We present in this section the results of two-dimensio
simulations of the generalized BTW model defined in E
~3!, with nearest-neighbor interactions and driven uniform
according to Eq.~1!. For a51/4 the avalanche size distribu
tions scales with system size, as can be seen in Fig. 2. Th
the hallmark of criticality. On the other hand, fora,1/4, no
scaling with system size is observed for sufficiently lar
systems. A level of dissipation as small as 1 part in 1000
enough to destroy criticality, see Fig. 3. The characteris
length scale of the system~measuring roughly the maximum
size of an avalanche! grows for increasing values ofa. We
have tentatively tried to describe the behavior of the sys
~in the regime ofa values close to 1/qc) by fitting the ava-
lanche distributions to the stretched exponential fo
P(s);s2aexp@2(s/s0)

b#. The fits are shown as lines in Fig
4. We usea51 andb51.3 for all values ofa. The charac-
teristic avalanche sizes0 diverges asa→(1/4)2. Figure 5
shows a fit to the behaviors0;(1/42a)22n, wheren51/2.
Hence, our simulations show that the nearest-neigh
model, like the random-neighbor model, ceases to be crit
as soon asa is made smaller than 1/qc . In the next section
we present renormalization-group arguments that illumin
this numerical finding and allows us to understand the va
n51/2.

a FIG. 2. Avalanche size distribution fora50.25 andL550, 100,
and 200. The slope of the distribution is slightly larger then
t;1.05.
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56 6705NONCONSERVATIVE SANDPILE MODELS
V. RENORMALIZATION-GROUP ANALYSIS

In order to apply the dynamical renormalization-gro
~DRG! analysis to the dynamics of the models defined by
update in Eqs.~3! and ~4!, it is convenient to rewrite the
algorithm in the following form:

E~r ,t11!5E~r ,t !2EQ„E~r ,t !2Ec…1(
rn

aEQ„E~rn ,t !

2Ec…1hd~r ,t !. ~8!

The sum runs over the neighbor sitesrn of the siter . The
value of the symbolE depends on which of the two mode
we consider. For the generalized BTW model@see Eq.~3!#
we haveE5Ec . For the Zhang model@see Eq.~4!# we have
E5E(r ,t). The timet refers to the lattice updates andQ(x)
is the step function:Q(x)50 for x<0 and Q(x)51 for
x.0.

FIG. 3. Avalanche size distributions fora50.249 75. The dis-
tributions refer to systems of linear sizeL550, L5100, L5200,
andL5400. No finite size scaling is present forL.200.

FIG. 4. Avalanche size distributions fora,0.25. The continu-
ous lines are fits of the formPa(s)}s21exp@2(s/s0)

1.3#.
e

We have introduced a source termhd(r ,t) to represent
the driving of the system. The uniform drive@case~1! above#
can be represented by the following expression:

hd~r ,t !5h0)
r

Q„Ec2E~r ,t !…. ~9!

One notes that the drive acts with the same strengthh0 at all
sites. Moreover, the drive only acts wheneverall sites have
E values below the threshold value. The random drive c
correspondingly be represented by

hd~r ,t !5h~r ,t !)
r

Q„Ec2E~r ,t !…, ~10!

whereh(r ,t) is a white noise signal in space and time.
The continuum limit of Eq.~8! is given by the following

equation:

] tE~r ,t !5@aD̃¹21~aqc21!#Q„E~r ,t !2Ec…E1hd~r ,t !,
~11!

where D̃ is an undetermined phenomenological diffusio
constant arising from the coarse-graining procedure involv
when deriving Eq.~11!. The form of the drive in Eqs.~9! and
~10! makes it difficult to apply standard RG technique
Dı́az-Guilera has suggested that the random drive@see Eq.
~10!# can be represented by a much simpler expression@14#.
Let us now explain this idea. We choose to write the sou
in the form

hd~r ,t !5 h̄1h~r ,t !, ~12!

FIG. 5. Cutoff in avalanche size distributions0 as a function of
(0.252a). The solid line is the interpolations0;(0.252a)21.
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6706 56GHAFFARI, LISE, AND JENSEN
where^h(r ,t)&50. Since the drive only acts in between th
avalanches and the lifetime of the avalanches spans all
scales we may try to capture the time correlations in
drive defined in Eq.~10! by assuming the following cor
relator for the fluctuating part of the drive:

^h~r ,t !h~r 8,t8!&52Gdd~r2r 8!. ~13!

It should be noted that this expression only correspond
the usual white noise correlator for the spatial degrees
freedom. The correlator is assumed to be independen
time. This is supposed to represent that the drive only act
between the avalanches. This feature of the noise corre
leads to a critical dimensiondc54 for the conservative
theory, in agreement with general expectation@14,15#. The
standard noise, which isd correlated in both time and spac
leads todc52.

Neglect for a moment the fluctuating part of the drive
assuminghd(r ,t)5 h̄ . Consider the limit of slow driving
h̄<(12aqc)Ec . A second thought will convince the read
that any spatially homogeneous time-dependent solutio
Eq. ~11!, E(r ,t)5E(t), will evolve towards the time-
independent solutionE(t)5 lime→01(Ec1e). This observa-
tion leads us to look for solutions of the form

E~r ,t !5Ec1dE~r ,t !, ~14!

wheredE(r ,t) has zero average.
To make the Langevin equation in Eq.~11! suitable for

the standard RG analysis, we need to regularize the non
lytical behavior of the step function@9,16,17#. We think that
the details of the analysis are interesting and useful, but s
they are of a somewhat technical nature we have defe
these details to the Appendix. The idea of the calculation
to study the fixed point structure of the Langevin equation
more and more nonlinearities are included in the represe
tion of the step function. We only succeed in applying t
RG calculation in the case of the random drive@Eq. ~10!#. In
this case we conclude that the BTW model and the Zh
model are equivalent even in the nonconservative regi
We do not find any attractive fixed points for either mod
whena,1/qc . In order to understand how critical behavi
develops asa→1/qc , we study the stability matrix of the
conservative fixed point when nonconservation is includ
The correlation length diverges according
j;(1/qc2a)2n. We determine the value ofn from the larg-
est eigenvalue,mmax of the stability matrix. The result is
n51/mmax51/2.

This result is in agreement with the numerical simulatio
where the characteristic avalanche sizes0 scales as
s0;(1/42a)21 in two dimensions~see Sec. IV and Ref
@3#!. In two dimensions we know that avalanches are co
pact@24# and therefore expects0 to scale asj2. Generally we
would expect

s0;jD f;~1/qc2a!2nD f;~1/qc2a!D f /2, ~15!

whereD f is the fractal dimension of the avalanche.
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VI. DISCUSSION AND CONCLUSIONS

We have studied the effect of lack of conservation in tw
types of algorithms and for two different types of drive. O
updated algorithm consists of a BTW-like update in which
fixed amount is distributed to the neighboring sites durin
relaxation update of an overcritical site. The other upd
rule we have analyzed is of the type considered by Zh
@12# and by OFC@5# in which an amount proportional to th
energy of the relaxing site is distributed during the rela
ation. We distinguish between models driven by ene
packages added at random sites or a uniform drive in wh
all sites increases their energy with the same constant
We addressed the question: Can the uniformly driven BT
model stay critical in the nonconservative regime? The
swer is no.

This lack of robustness with respect to the introduction
a nonconservative element in the update algorithm is to
contrasted with the behavior of the OFC model@5,8#. This
model remains definitely critical when a low level of diss
pation is introduced. The only difference between the u
formly driven version of the BTW model we have studie
and the OFC model is in the way an overcritical site distr
utes energy to its neighbor sites. In our model the active
relaxes toE2Ec and distributes the fixed amountqcaEc . In
the OFC model the active site relaxes to zero and distribu
an amountqcaE. We believe this difference to be importan
in two ways. The variable amount of energy distributed
the OFC algorithm together with the resetting of the relax
site toE50 allow the synchronization of the sites@6#. More-
over, an effective conservation can occur during the a
lanche in the OFC model because the quantityqcaE can be
greater thanEc even fora,1/qc .

We have determined numerically the cutoffs0 in the ava-
lanche distribution. We find thats0;(ac2a)22n, where
n.1/2. Since avalanches are compact in two dimensions
conclude that the correlation length of the model diverges
j;(ac2a)2n when the conservative limita→ac51/qc is
approached. This result is in agreement with a previous st
by Manna, Kiss, and Kerts´z @3# of a slightly different ran-
domly driven model. We stress thatn.1/2 is found numeri-
cally for the BTW-like model for the uniform as well as fo
the random drive.

We have presented a renormalization-group analysis f
which we conclude that the randomly driven BTW and t
Zhang models are equivalent and both cease to exhibit c
cal behavior in the nonconservative regime. This result is
extension of a previous result for the conservative case
Dı́az-Guilera@9#. From our RG analysis we find thatn51/2
for dimensions less thandc54. This agrees well with the
numerical result mentioned in the paragraph above. The
ponentn has also been calculated by Vespignani, Zapp
and Pietronero@25#. They find thatn'0.67 in two dimen-
sions. Their result depends, however, on the the size of t
coarse-graining cell in their real-space renormalization p
cedure and the value estimate forn by Vespignaniet al. has
a tendency to decrease with increasing size of the coa
graining cell@26#. It is not clear why our RG resultn51/2
for the randomly driven BTW model should agree with t
numerical simulation of the uniformly driven BTW mode
The reason might be, as suggested by numerical simulati
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56 6707NONCONSERVATIVE SANDPILE MODELS
that the randomly driven and the uniformly driven BTW
models have identical exponentsn.

When we studied the uniformly driven random-neighb
version of the Zhang or OFC model we found that the criti
conservation value isac.2/9 and that the corresponding e
ponent isn.3/2 @8#. From this we conclude that~for reasons
that are not clear to us at the moment! the BTW model uni-
formly driven behaves as the RG analysis of the rando
driven version of the model predicts, whereas the same is
the case for the uniformly driven Zhang~or OFC! model.

The overall conclusion of our paper is the following. Un
form drive ~in contrast to random drive! is a nessesary con
dition for critical behavior in the nonconservative regim
But uniform drive is not a sufficient condition. The synchr
nization and effective energy conservation allowed by
Zhang update@8# appears to be necessary in addition to
uniform drive in order to obtain critical behavior in nonco
servative sandpilelike models.
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APPENDIX: RG ANALYSIS

This appendix contains some of the nonstandard feat
of applying the RG method to Eq.~11!. First, we need to find
a way to represent the step function in terms of a~infinite!
polynomial@9,16,17#. Consider a real functionf :R°R with
the following properties: ~a! limx→2` f (x)50, ~b!
limx→` f (x)51, and~c! the function can be expanded arou
x50 and has infinite radius of convergence. The step fu
tion is represented by

Q~x!5 lim
b→`

f ~bx!. ~A1!

From Eqs.~11!, ~14!, and~A1! we derive
r
l

ly
ot

.

e
e

es

c-

] tdE~r ,t !5 lim
b→`

@aD̃¹21~aqc21!#

3 f „bdE~r ,t !…E1hd~r ,t !. ~A2!

The part of the equation independent ofdE(r ,t) can be re-
moved from the equation by the following specific tuning
the constant part of the drive,

h̄5~12aqc!Ec , ~A3!

where we imagine that the limitb→` is followed by the
limit dE→0. We believe that this tuning represents the i
plicit tuning which, in fact, occurs during simulations of th
model. One recalls that the model isnot driven during the
evolution of the avalanches. This allows the model to act a
point where the energy added to the model in between
avalanches is precisely balanced by the energy dissip
during the avalanche. In the simulations of the model, dis
pation takes place in the bulk whena,1/qc ~dissipation al-
ways occurs at the open boundary of the system!, and Eq.
~A3! represents the same type of balance.

Our next step is to choose the functionf (x) in Eq. ~A2!.
We use in our concrete calculations the probability integ
@18#

f ~x!5
1

Ap
E

2`

x

dte2t2

5
1

2
1

1

Ap
(
k51

`

~21!k11
x2k21

~2k21!~k21!!
. ~A4!

The results obtained for a specific choice ofQ-function
representationf (x) will not depend onf (x) when all terms
in the expansion off (x) are included and the limitb→` is
performed@16#. Substituting the expansion of theQ function
into Eq. ~A2! leads to the following equation:
] tE~r ,t !5D¹2E1l2¹2E21l3¹2E31l4¹2E41l5¹2E51•••1g1E1g2E21g3E31g4E41g5E51•••1h~r ,t !.
~A5!

where^E&5^h&50 @to simplify the notation we have dropped thed in front of E(r ,t), see Eq.~A2!#. The coefficients for the
generalized BTW model and the Zhang model are given, respectively, by

D[l15
aD̃Ecb

Ap
or aD̃S 1

2
1

Ecb

Ap
D , g15~aqc21!

Ecb

Ap
or ~aqc21!S 1

2
1

Ecb

Ap
D , l250 or

aD̃b

Ap
,

g250 or
~aqc21!b

Ap
, l352

aD̃Ecb
3

3Ap
~same for the Zhang model!,

g352~aqc21!
Ecb

3

3Ap
~same for the Zhang model!, etc. ~A6!
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Nonlinearities corresponding to even powers of the fi
E(r ,t) are absent in the BTW model but present in t
Zhang model. The coefficients of the odd term are ident
in the two models from three up. Note thatg i}(aqc21) for
all i , that is, in the conservative case all theg i terms disap-
pear.

We now study the nature of the fixed point structure
Eq. ~A5! by applying the usual RG procedure@19–21#. A
transparent and clear explanation of the method can be fo
in @22#. Here we limit our discussion to the results of th
analysis. We study the fixed point structure as more
more nonlinearities are included in Eq.~A5!. To appreciate
the potential of this approach it is worthwhile to mention th
for the conservative case~i.e., all g i50) the following hap-
pens@9#. The equation withl i50 for all i>3 has no attrac-
tive fixed point in dimensionsd,dc54. However, an attrac
tive fixed point appears ford,dc when nonlinearities of
higher than quadratic order is included. Thus it seems p
sible to describe the self-organization~attractive fixed point!
produced by the threshold condition@15# ~modeled by theQ
function! by including a sufficient number of nonlinearitie
in Eq. ~A5!.

The difference between the set of nonlinearities that
ters into the equation of motion for the BTW model and t
Zhang model turns out to be irrelevant in the limitb→`.
This was shown by Dı´az-Guilera for the conservative cas
@9#. In the nonconservative case the renormalization of
noise is different in the two models for finiteb values. In the
BTW model the strength of the noise correlatorG in Eq. ~13!
is not renormalized. In the Zhang, however,G is renormal-
ized at the one-loop level~including up to cubic nonlineari-
ties! by a term proportional to the square of the noncons
vative coupling constantg2. First, sinceg2 vanishes in the
conservative limita→1/qc , we recover Dı´az-Guilera’s re-
sult in this limit. Second, the term responsible for the ren
malization ofG is proportional tob22 and vanishes accord
ingly in the limit b→`.

The following heuristic argument appears to be a sim
way to see that the difference between the parity of the n
linearities which enter into the equation of motion for t
two models~BTW: odd terms only; Zhang: both odd an
even! cannot represent a factual difference between the
models. Assume we represent theQ function in terms of Eq.
~A1! by choosing a functionf (x) which when expanded only
contains odd powers ofx @as in the example in Eq.~A4!#.
The functionx°@ f (x)#2 will also be able to serve as a rep
resentation of theQ function. However,f 2(x) will contain
both odd and even powers ofx. Hence, if we make use o
f 2(x) as our representation of theQ function in Eq.~A2! the
BTW model and the Zhang model would not differ wi
respect to the oddness or evenness of the nonlinearities
tering into Eq.~A5!.

We conclude that the randomly driven BTW and t
Zhang models remain equivalent even in the nonconserva
case. These general considerations were confirmed whe
analyzed Eq.~A5! by successively including nonlinearitie
up to fifth order. Let us now turn to the uniformly drive
models. Numerical simulations show that the BTW mod
and the Zhang modelare different when driven homoge
d
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neously. The criticality of the BTW model is destroyed
soon as any degree of nonconservation is introduced
choosinga,1/qc . Whereas the Zhang model~which when
driven homogeneously is identical to the OFC model! re-
mains critical even fora,1/qc .

Can the behavior of the uniformly driven models be u
derstood by use of the RG technique? Can the homo
neously driven system@see Eq.~9!# be represented by a
simple effective noise along the lines of Eqs.~12! and~13!?
For instance, can we detect any trace of the appearence
all-attractive fixed point for the RG flow equations when w
damp the fluctuations in the noise by lettingG→0 in Eq.
~13!? One could imagine that a difference between the t
models could be detected in the limit where the fluctuatio
in the driving termh(r ,t) are made smaller by decreasingG.
We were, however, unable to find any tendency toward
difference in the fixed point behavior of the two models
the limit of smallG. We conclude that the nature of the driv
must be treated more carefully in order to understand
difference between the twouniformly driven models by
means of the RG approach.

Let us now explain how the value of the critical expone
n51/2 can be understood in terms of the RG analysis.
first note that the coefficientsg i and the coefficientsl i origi-
nates from the expansion of the same function, namely thQ
function. It seems therefore natural to assume that the id
tities

g i

g j
5

l i

l j
~A7!

remain correct under renormalization. By use of this assum
tion we can deduce that the RG flow equations for the c
pling constants are of the following form:

dl i

dl
5l i@Fi~lW ,gW ,G!1di

l#[hi
l ,

dg i

dl
5g i@Fi~lW ,gW ,G!1di

g#[hi
g . ~A8!

We have made use of the following notation.Fi denotes a se
of functions @to be calculated in principle through the loo
expansion of Eq.~A5!#. The same functionFi enters the flow
equation forl i and forg i . The functionsFi depends on the
coupling constantslW 5(l1 ,l2 , . . . ) andgW 5(g1 ,g2 , . . . ),
and on the strength of the noise correlatorG. The bare scal-
ing dimension of the coupling constants are easily de
mined by dimensional analysis@19–22#.

di
l5~ i 21!x1z22, di

g5~ i 21!x1z5di
l12.

~A9!

Here we made use of the usual definitions of expone
assume we scale space according tor→el r . To compensate
for this change of scale, we scale time and the field accord
to t→ezl t andE→exl E. This defines the dynamical expo
nentz and the roughening exponentx.

The fixed points of the flow equations are obtained
demanding that all right hand sides in Eq.~A8! vanish simul-
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taneously, i.e.,hi
l5hi

g50 for all i . The conservative fixed

point lW * , analyzed by Dı´az-Guilera, is obtained by assumin
that gW 50 and then solving

Fi~lW ,0,G!1di
l50⇒lW 5lW * . ~A10!

This fixed point is attractive in the space consisting of
coupling constantslW . We now study the stability of this
fixed point in the larger coupling space consisting oflW ^ gW .
The linear stability of the fixed point (lW ,gW )5(lW * ,0) is con-
troled by the Jacobian matrix

]hu~lW * ,0!5S ]hi
l/]l j ]hi

l/]g j

]hi
g/]l j ]hi

g/]g j D
~lW * ,0!

~A11!

5S l i]~Fi !

]l j
l i

]Fi

]g j

0 d i j ~Fi1di
g!
D

~lW * ,0!

. ~A12!

The diagonality of the partial derivatives]hi
g/]g j evaluated

at the fixed point (lW * ,0) together with the identity

Fi~lW * ,0,G!52di
l , ~A13!

which follows from Eq.~A10! makes it easy to see that th
eigenvaluesm of the Jacobian matrix in Eq.~A12! are deter-
mined by the following equation:
.

et

.

ie

nd
e

det~]h2mI !5det~$]hi
l/]l j%2mI !)

k
~dk

g2dk
l2m!50.

~A14!

Since$]hi
l/]l j% is simply the stability matrix of the Dı´az-

Guilera fixed point we conclude that the fixed point (lW * ,0)
remains~as expected! attractive along the directions of th
coupling constantsl i and that the fixed point is repulsiv
along the directionsg i . The eigenvalues of the repulsiv
directions are according to Eq.~A14! and Eq.~A9!, all given
by

m5di
g2di

l52. ~A15!

As the fixed point (lW * ,0) is approaced by tuninga towards
the critical value 1/qc ~where all are theg coupling constants
vanish!, the correlation length of the system will diverg
according to

j;~1/qc2a!2n, ~A16!

where the exponentn is given by the inverse of the larges
repulsive eigenvalue of the fixed point@23#. Hence in our
case we haven51/2. This result is independent of dimen
sion.
,
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